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Abstract. The behaviour of the antiferroelectric SmCA liquid crystal phase under applied electric field is
discussed theoretically. The phase diagram involving the SmA, SmCA and SmC∗A phases is worked out and
shown to exhibit a Lifshitz critical point. The deformation of the bilayer structures induced by the field
transforms the SmCA phases into a ferrielectric phase whose specific configuration is described.

PACS. 64.70.Md Transitions in liquid crystals – 61.30.Cz Theory and models of liquid crystal structure

1 Introduction

A number of experimental studies have recently clarified
some of the questions which have been raised by the dis-
covery of antiferroelectric and ferrielectric phases in liq-
uid crystals [1–6]. On the one hand, quasielastic light
scattering [7], and X-ray experiments [8] have established
the bilayer structure of the antiferroelectric SmC∗A phase
in MHPOBC {4-(1-methylheptyloxycarbonyl)-phenyl-4’-
octyloxybiphenyl-4-carboxylate}. On the other hand, the
relaxational behaviour of the SmC∗A and SmC∗γ phases
was carefully investigated [9–13] revealing complex ab-
sorption processes corresponding to three normal and pha-
son modes, attributed to the antiferroelectric ordering, to
azimuthal fluctuations of the molecules and to the slow ro-
tation of the double twisted helicoidal modulation wave of
the antiferroelectric structure, restoring the translational
symmetry lost at the SmA–SmC∗A transition.

One of the important aspects, which has been only
partly elucidated by the experimental investigations
[14–19], is the behaviour of the antiferroelectric structure
under application of an electric field. Here, one can expect
a competition between two phenomena: the unwinding of
the antiferroelectric helices, resulting in a commensurate
lock-in SmCA phase, or the onset of a field induced
SmC∗ phase. Besides, as the SmCA–SmC∗ transition
is found in non-racemic mixtures, i.e. with unequal
numbers NL and NR of left and right handed molecules,
the relative composition x = (NL − NR)/2(NL + NR)
influences differently the order of stabilization of
the structures. For example, in TFMHPOBC{4-
(1,1,1-trifluoromethyl-heptiloxycarbonyl)phenyl-4’-octyl-
oxybiphenyl-4-carboxylate) [16]} the SmA–SmC∗A tran-
sition occurs in the nearly optically pure substance,
whereas for inhomogeneous compositions the sequence
SmA–SmC∗–SmC∗A is realized.

The present work aims to analyze, in the framework
of a Landau-type model, the behaviour of an antiferro-
electric SmCA phase under applied electric field E for
non-racemic compositions. At first the effect of E on the
SmA–SmCA transition in examined (Sect. 2). The phase
diagram involving SmA, SmCA and SmC∗A phases is
worked out (Sect. 3). The deformation of the local struc-
ture of the SmCA phase under the effect of E is then shown
to correspond to a ferrielectric structure whose molecular
organization is described (Sect. 4).

2 Phenomenological theory of the SmA–SmC�

A
phase transition under applied electric field

2.1 Basic ingredients of the model

One can describe phenomenologically a bilayer stacking
of dipolar molecules by using the formalism introduced in
references [20,21], which makes use of two axial vectors
η1 and η2 defined as follows:

η1 = (−n1yn1z, n1xn1z),η2 = (−n2yn2z, n2xn2z)

where the niu(i = 1, 2;u = x, y, z) are the components
of the director in the ith layer, and the space variables
x, y and z, indicate, respectively, the in-plane coordinates
and the direction perpendicular to the layers. The four
components of η1 and η2 span a four-dimensional re-
ducible representation of the parent chiral SmA space-
group: G0 = D∞⊗Tz. This representation decomposes in
two irreducible representations of G0 which are, respec-
tively, spanned by the planar vectors: ηp = η1 + η2, and
ηA = η1 − η2 transforming as the in-layer polarization:
p = p1 + p2 and antipolarization a = p1 − p2 where p1

and p2 are the polarizations of two adjacent smectic lay-
ers. Using the symmetry properties of p and a one can
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therefore construct the free-energy expansion:

Φ =

∫
[Φ̃H(p,a) + Φ̃grad(p,a)]Sdz (1)

where S is the area of the layer surfaces. Φ̃H and Φ̃grad
are the homogeneous and, gradient parts of the expansion
density, defined as [20,21]:
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(3)

where α1, α2, β1, β2, γ1, γ2, g1, g2, λ1, λ2 are phe-
nomenological coefficients, with (β1, β2, g1, g2) > 0. E is
an applied electric field.

In reference [21], the tilt angle of the molecules was
assumed to remain constant across the antiferro, ferro
and ferrielectric phases, as the regions of stability of these
phases were taken far from the region of stability of the
SmA phase, and only the azimuthal angle of the molecules,
with respect to the normal to the layers, was considered.
As we aim here to describe the SmA–SmC∗A transition, the
tilt-angle of the molecules is the primary order-parameter.
As a consequence, the minimization of Φ requires to work
out the more general solutions of the corresponding Euler-
Lagrange equations, which have been discussed previously
by Zeks et al. [22]. Note that higher-order couplings of
the form (p · E)2 or (a · E)2 are not taken into account
into equation (2) since they do not modify in a qualita-
tive way the results obtained from our model. Note also
that the Lifshitz invariants in equation (3), which express
the helicity of the structures, cannot be neglected as in
reference [20], since the helicity is high for SmA∗ phases
observed in optically pure substances.

2.2 Behaviour of the basic structures for a chiral
compound

Let us consider a system undergoing a direct SmA–SmC∗A
transition, assuming that it occurs far from the region of
stability of the SmC∗ phase. Hence one can neglect the
quartic p-term in equation (2) and the square gradient
p-term in equation (3), since these terms express small
perturbations in the considered region. Consequently no
stable ferroelectric or ferrielectric phase will be stabilized.
One can introduce the auxiliary variables:

A = (β2g2)1/2λ−1
2 · a and P = g2λ

−2
2 (β2α1)1/2 · p.

(4)

The order parameter expansion defined by equation (1)
becomes: Φ = λ3

2β
−1
2 g−1

2 SF with:
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∫ [α
2
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y) +

1

2
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]
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α = α2g2λ
−2
2 and G1,2 = λ2

2γ1,2(β2g2α1)−1 are renormal-

ized constants, u = λ2g
−1
2 z is the renormalized coordinate

and h = g2λ
−2
2 (β2α

−1
1 )1/2. E the renormalized field, which

is assumed to be applied along the Ox axis. Ȧu = ∂A/∂u.
The functional F depends only on the three independent
phenomenological coefficients α,G1 and G2 and on the
field h.

A first step in finding the form of F is to consider only
the homogeneous terms in equation (5). The equations of
state of the system correspond in this case to the mini-
mization of the polynomial F with respect to Ax, Ay, Px
and Py. Three phases are found to be possibly stable:

1) A SmA phase with an induced polarization Px = h,
and Py = Ax = Ay = 0. Note that this phase actually
correspond to a field-induced SmC∗ phase whose tilt angle
and polarization go to zero at the limit h = 0. In this
article we will nevertheless denominate this phase SmA.

2) Two distinct homogeneous (commensurate) antifer-
roelectric phases denoted SmCA1 and SmCA2 . The equa-
tions of state for the SmCA1 phase are:

Px +G1PxA
2
y = h, and αAy +A3

y +G1P
2
xAy = 0 (6)

which yield: Px 6= 0, Ay 6= 0, Py = Ax = 0. The equations
of state for the SmCA2 phase are:

Px + (G1 +G2)PxA
2
x = h, and

αAx +A3
x + (G1 +G2)P 2

xAx = 0 (7)

which give: Px 6= 0, Ax 6= 0, Py = Ay = 0.
The stability conditions for the three preceding phases

are:

α+ (G1 +G2)h2 ≥ 0, and α+G1h
2 ≥ 0 (8)

which show that for G2 < 0, the SmCA2 phase is stabi-
lized below the SmA phase, whereas for G2 > 0 it is the
SmCA1 phase which appears first. Thus, for a given sign
of G2 only one of the two antiferroelectric structures will
take place below the SmA phase. As the phase diagram
possesses analogous features for G2 < 0 or G2 > 0, we will
consider only this latter case, namely the SmA–SmCA1

phase transition. Using equation (6) one can then write
the corresponding stability condition under the reduced
form:

α+G1P
2
x1 + 3A2

y1 ≥ 0 (9)

where Px1 andAy1 are the equilibrium values of Px andAx
in the SmCA1 phase. At a second-order phase transition
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between the SmA and SmCA1 phases, one has Ay1 = 0
and Px1 = h. Accordingly, the equation of this second-
order transition line in the α−h plane is:

α+G1h
2 = 0. (10)

In the vicinity of the preceding line one can expand Px1 =
h(1 +G1A

2
y)−1 in series of Ay1:

Px1 ' h(1−G1A
2
y1 +G2

1A
4
y1 −G

3
1A

6
y1 + · · · ). (11)

Substituting (11) into (5), one gets the following form
for F :

F =
1

2
(α+G1h

2)A2
y1 +

1

4
(1− 2G2

1h
2)A4

y1

+
1

2
G3

1h
2A6

y1 −
1

2
h2. (12)

For small values of h the SmA–SmCA1 transition is second
order, while for h ≥ htcp the transition becomes first-
order. The coordinates of the tricritical point are:

htcp =
1

G1

√
2
, and αtcp = −

1

2G1
· (13)

For h < htcp one can omit the sixth degree term in (12)
and obtain the explicit form for Ay1 and for the equilib-
rium value of F :

Ay1 '
[
(α+G1h

2)/(2G2
1h

2 − 1)
]1/2

, and

Feq ' (α+G1h
2)2/4(2G2

1h
2 − 1)−

1

2
h2. (14)

Writing α2 = a0
2(T − Tc2) and assuming α1 constant, one

can express, using (4), the equations of the transition lines
and critical point in the T−E phase-diagram, which is
shown in Figure 1a. Figure 1b represents the field de-
pendence of the antiferroelectric component Ay1 given by
equation (14). We will now use the preceding results as
a basis for investigating the more complex behaviour of
the helicoidal antiferroelectric structure with an external
electric field.

2.3 Helicoidal antiferroelectric structures

For non-racemic mixtures, the gradient invariants in (5)
must be taken into account for the minimization of the
functional F as inhomogeneous (incommensurate) states
can be stabilized. The influence of the gradient terms on
the stability of the homogeneous SmA and SmCA1 phases
is found by considering the bifurcations induced in the
system of Euler-Lagrange equations, which minimize F .
The more general solutions of these equations can be writ-
ten [24], as periodic perturbations of the form:

Px = Px1 + p̂1cos(qu+ ω), Py = p̂2sin(qu+ ω),

Ax = â1cos(qu), Ay = Ay1 + â2sin(qu) (15)

where p̂1, p̂2, â1 and â2 are the (small) amplitudes describ-
ing the overcritical behaviour of the order-parameters P

(a)

(b)

Fig. 1. (a) Temperature-electric field phase diagram of a sys-
tem containing a basic unwound antiferroelectric structure,
from equation (10). (b) Dependence on field and tempera-
ture of the antiferroelectric component Ay1 from equation (14).
Dashed and solid lines are, respectively, second and first-order
transition lines.

and A below the bifurcation. ω is a phase factor and q
is the wave-vector of the perturbations. Substituting (15)
into F one gets, after integration of the sum (5) over a
period 2π/q:
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(â4

1 + â4
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(16)

F1 is the Landau expansion which describes the phase
transitions from the homogeneous SmA phase to the inho-
mogeneous or homogeneous antiferroelectric phases. The
stable states are obtained by a minimization of F1 with
respect to Ay1, Px1, p̂1, p̂2, â1, â2 an ω. The loss of stability
of the homogeneous phase figuring in the phase diagram,
with respect to the inhomogeneous phase, is expressed by
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the condition:

D(Ay1, Px1, q, ω) = 0 (17)

where D represents the determinant of the matrix of the
second derivatives of F1 with respect to the perturbative
variables p̂1, p̂2, â1, â2. The explicit form of equation (17)
can be written:

q4 + d2q
2 + d0 = 0 (18)

with

d2 = 2α+ 4A2
y1 + (2G1 +G2)P 2

x1 −
{

4G2
1(1 +G1A

2
y1)−1
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2

[
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A2
y1P

2
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and:

d0 =

[
α+A2

y1 + (G1 +G2)P 2
x1 −

G2
2A

2
y1P

2
x1sin2ω

1 + (G1 +G2)A2
y1

]

×

[
α+ 3A2

y1 +G1P
2
x1 −

4G2
1A

2
y1P

2
x1sin2ω

1 +G1A
2
y1

]
. (20)

A loss of stability of a homogeneous phase will occur for
the wave-vector qc, which determines the absolute mini-
mum of D with respect to q and ω. Minimization of D
with respect to q yields:

4d0 = d2
2 (21)

which constitutes the equation of the limit of stability line
for the homogeneous phases. The critical wave-vector on
this line is:

qc =
(
−

1

2
d2

)1/2

(22)

which shows that d2 < 0. When d2 = 0 on the limit of
stability line qc = 0. In other words, one has a crossover
from a transition to a inhomogeneous phase to a transition
to a homogeneous phase. The double condition:

d2 = qc = 0 (23)

corresponds to the coordinates of a Lifshitz point [25] in
the T−E phase diagram. Minimization of D with respect
to ω gives:

∂D

∂(sin2 θ)
sin 2ω = 0

and

∂2D

∂(sin2 θ)2
sin2 2ω + 2

∂D

∂θ
cos 2ω > 0. (24)

It is easy to show that conditions (24) coincide with a
minimum of D for

cosω = 0 (25)

whereas sinω = 0 is associated with a maximum of D.
Introducing (22, 25) in (15) provides the equilibrium values
of the order-parameter components in the inhomogeneous
phases, close to the limit of stability of the homogeneous
phase.

Starting from the SmA phase, for which Px1 = h, and
Ay1 = 0, the equation of the limit of stability line is:

α0(h) =
1

4
(G2

2h
4)−

1

2
(2G1 +G2)h2 +

1

4
· (26)

For α < α0(h) an helicöıdal SmC∗A1
phase takes place.

The wave-vector associated with the pitch of the helix is:

qc =
1

2
(1−G2

2h
4)1/2. (27)

with increasing field h, qc decreases and vanishes at the
Lifshitz point of coordinates:

αL = −G1/G2, hL = G
−1/2
2 . (28)

At this point the SmC∗A1
phase transforms into the SmCA1

phase, the two preceding phases merging with the SmA
phase at the Lifshitz point. These results are valid for
d2 < 0, namely for −hL < h < hL. The perturbative
approach expressed in equation (15) holds only for small
values of the amplitudes p̂1, p̂2, â1, â2, so one can assume
that the Lifshitz point takes place at lower fields than
the tricritical point on the SmA–SmCA1 transition line.
This condition corresponds to the inequality: G2 < 2G2

1.
Accordingly, the limit of stability line (26) coincides with a
second-order transition line between the SmA and SmC∗A1

phases.
Similar considerations apply to the loss of stability

of the SmCA1 phase with respect to the SmC∗A1
phase.

However, due to the absence of group-subgroup relation-
ship between these phases the SmCA1–SmC∗A1

transition
is first-order. Furthermore equation (22), which represents
a limit of stability line for the SmCA1 phase, cannot be
simplified, as Px1 and Ay1 have non-zero values in the
SmCA1 phase. Nevertheless, one can approximate equa-
tion (22) in two extreme regions of the phase diagram:
close to the Lifshitz point at which end simultaneously
the SmCA1–SmC∗A1

transition line and the limit of stabil-
ity line (21), and far from the Lifshitz point, where only
the two, SmCA1 and SmC∗A1

, phases are found. The two
situations will be discussed separately.

3 Temperature-electric field phase diagram

Let us consider the SmC∗A1
phase in the vicinity of the

SmA–SmC∗A1
transition, namely for α . α0(h). As in

equation (16) the coefficient of p̂2
1 and p̂2

2 are all positive,
below the transition one has p̂1 = p̂2 = 0. The structure
of the SmC∗A phase will thus be exclusively determined
by the non-zero perturbative order-parameter amplitudes
â1 and â2. Following the approach proposed by Michelson
and Cabib [26], one can diagonalize the quadratic remain-
ing terms in F1, using the transformation:

ν = â1 − (G2h
2 −∆)(2q)−1â2,

µ = â1 − (G2h
2 +∆)(2q)−1â2 (29)

with ∆ = (G2
2h

4 + 4q2)1/2. The matrix of the quadratic
form of the harmonic part of F1 possesses two eigenvalue,
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and the SmA–SmC∗A1
transition occurs when the smallest

of these eigenvalues goes to zero. The parameter µ cor-
responds to this critical eigenvalues, and one has in the
vicinity of the transition µ� ν, so it is possible to assume
that ν ' 0. Introducing the critical order-parameter:

ξ = µ(∆−G2h
2/∆)1/2. (30)

one gets the effective Landau expansion associated with
the SmA(ξ = 0)–SmC∗A1

(ξ 6= 0) transition:

F1(ξ, h) =
π

2
(
1

2
λξ2 + εξ4)− πh2 (31)

with: λ = 1
2

[
2α+2q2+(2G1+G2)h2−(G2

2h
4+4q2)1/2

]
and ε=(∆−G2h

2)2(2∆2+G2
2h

2)
[
32∆2(∆2−G2h

2)2
]−1

.
The equation of the SmA–SmC∗A1

transition line, and
the corresponding critical wave-vector qc are, respectively,
given by λ = 0 and by ∂λ/∂q = 0, which yield again the
expressions (26, 27). In the vicinity of the Lifshitz point,
as q is small, one can use for λ and ε the following approx-
imations:

λ(h, q) ' α+G1h
2 + q2(1− h2

L/h
2) + q4h6

L/h
6 (32)

and ε ' 3/32. Replacing q by its critical value (27). F1

becomes:

F1(ξ, h) =
π

2

[
1

2
(α− α0(h))ξ2 +

3

32
ξ4

]
− πh2. (33)

The minimization of F1 with respect to ξ, gives ξ = 0 for
α > α0 (the SmA phase), and:

ξA = ±

[
−

8

3
(α− α0(h)

]1/2

(34)

for α < α0(h) (the SmC∗A1
phase). The equilibrium values

of â1 and â2 are:

â1 = ±

[
2

3
(1−G2h

2)|α− α0(h)|

]1/2

,

â2 = ∓

[
2

3
(1 +G2h

2)|α− α0(h)|

]1/2

. (35)

They give in turn the equilibrium value of F1 in the SmC∗A1

phase:

F eq1 = −
π

3
[α− α0(h)]

2 − πh2. (36)

The equation of the first-order SmCA–SmC∗A1
transition

line, close to the Lifshitz point, is obtained from the con-
dition F eq1 = Feq, where Feq is given by equation (14). It
yields the equation:

α(h) = αL − 2G1hL(h− hL)− (h− h2
L)/(K − 1) (37)

where K = (2/3)(1 − 2G2
1/G2)1/2 > 1. Equation (37) is

valid only in the vicinity of the Lifshitz point. The config-
uration of the transition lines (10, 37) near this point is

(a)

(b)

Fig. 2. Electric field-temperature phase diagram in the vicinity
of the Lifshitz point, following equations (10, 21, 37); (a) and
(b) correspond, respectively, to positive and negative values of
G1(K − 1)− 1. Dashed and solid lines have the same meaning
as in Figure 1. The dashed-dotted line is the limit of stability
line given by equation (10).

shown in Figures 2a and 2b. The two lines possess a com-
mon tangent at the Lifshitz point and form an acute angle
if G1(K − 1) > 1, or an obtuse angle for G1(K − 1) < 1.

Far from the Lifshitz point and from the SmA phase,
the approximation (15) does not hold, and the equation of
the first order SmCA1–SmC∗A1

transition line has a com-
plex form. However, one can assume that the antiferro-
electric order-parameter Ax and Ay go to saturation, and
write:

Ax = A cosψ, Ay = A sinψ (38)

where A is independent from the space variable u, and
ψ = ψ(u).

Let us note that the saturation of Ax and Ay, does
not imply a saturation of the ferroelectric components Px
and Py. This can be foreseen by substituting (38) in the
expansion F , defined by equation (5), and by minimizing
F with respect to ψ and Px. One obtains the following
equations of states:

∂2ψ

∂u2
= −

1

2
G2P

2
x sin 2ψ (39)

and Px(1 +G1A
2 +G2A

2 cos2 ψ) = h. (40)

Px is independent from u, under the condition G1,2A
2 �

1. Assuming this condition, equation (39), which is anal-
ogous to the equations describing the soliton lattice in
cholesterics [27], provides the critical field which unwinds
the SmC∗A1

helices:

hcr =
π

4
√
G2

· (41)
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(a)

(b)

Fig. 3. General configurations of the electric field-temperature
phase diagram, for a positive (a) or negative (b) sign of G1(K−
1) − 1. The direction of the first-order transition line SmCA–
SmC∗A, far from the SmA phase is deduced from equation (43).
The lines have the same meaning as in Figure 2.

Comparing (41) to (13, 28), one can deduce that:

hcr < hL < htcp (42)

i.e. the unwinding critical field is smaller than the field
at which the Lifshitz point takes place. In unrenormalized
variables, equation (41) becomes:

Ecr = πλ2α1(4
√
g2γ2)−1. (43)

Assuming that α1 is independent from temperature,
one can deduce from equation (43) that the first-order
SmCA1–SmC∗A1

transition line is parallel to the tempera-
ture axis in the saturated regime region of the T−E phase
diagram.

We are now able to give an almost complete descrip-
tion of the topology of the T−E phase diagram. Thus
for fields −hL < h < hL, one has a second-order SmA–
SmC∗A transition line, given by equation (26). For fields
hL < h < htcp one has a second-order SmA–SmCA1 tran-
sition line, given by equation (10). The two preceding lines
merge at the Lifshitz point with the first-order SmCA1–
SmC∗A1

transition line expressed by equation (37). Going
back to the unrenormalized variables, given by equation
(4), one gets the T−E phase diagrams, which are shown
in Figures 3a and b. Let us note that while the forms
of the lines in Figure 3 depend on specific assumptions
made in the course of our calculations, the topology of
the phase diagrams, namely the sequences of phases, the
order of the transitions, the singular points..., are deduced
from the symmetry of the system and constitute intrinsic
properties of antiferroelectric liquid-crystals. In particu-
lar, if one assumes the stabilization of the SmCA2 phase,

instead of SmCA1 , similar results are obtained, i.e. the
potential (16) remains unchanged providing the following
transformations.

(G1, G2)→ (G1 +G2,−G2), and (â1, â2)→ (b̂2, b̂1)
(44)

b̂1 and b̂2 being perturbative amplitudes defined by:

Ax = Ax2 + b̂1 cos qu, and Ay = b̂2 sin qu. (45)

4 Induced ferrielectricity in the smectic
SmCA phases

A comparison of the theoretical results found in Sec-
tion 3, with the temperature-electric field phase diagrams
reported experimentally [14–18] requires a more detailed
analysis of the local structure of the SmCA1 , SmCA2 , and
of their incommensurate variants SmC∗A1

, and SmC∗A2

phases. With that goal, let us write, in agreement with
the definitions given at the beginning of Section 2:

ηi =
1

2
(− sin 2θi sinφi, sin 2θi cosφi)(i = 1, 2) (46)

where the ηi are expressed in functions of the tilt angles θi
and azimuthal angles φi of two adjacent layers. One can
also write:

η1 =
1

2
(ηp + ηA) and η2 =

1

2
(ηp − ηA) (47)

which yields: η2
i =

1

4
sin2 2θi.

Since the polarization p and antipolarization a trans-
form respectively as ηp and ηA under the action of the
symmetry group G0, the bilinear invariants (p · ηp) and
(a · ηA) are allowed by the symmetry of G0. Therefore
one can take ηp = K1p and ηA = K2a, where K1 and
K2 are constants. Let us first consider the structure of the
SmCA1 phase. In this phase, following equation (6), ηp is
perpendicular to ηA so one has: ηA · ηp = η2

1 − η2
2 =

(1/4)(sin2 2θ1 − sin2 2θ2) = 0. Thus, the tilt angle is
the same for two adjacent layers (θ1 = θ2 = 0). Since
η1 · η2 = (1/4) sin2 2θ cos(φ1 − φ2), one finds the follow-
ing difference for the azimuthal angles of two successive
layers:

φ1 − φ2 = arccos (η2
p − η

2
A)/(η2

p + η2
A). (48)

In the SmA phase, under applied field, one has: ηA =
0, φ1 = φ2. In the vicinity of the SmA–SmCA1 transition
line, ηA will remain small, and equation (48) can be ap-
proximated by: φ1 − φ2 ' 2|ηA|/|ηp|. The corresponding
structure of the SmCA1 phase is represented in Figure 4a.
It shows the application of an electric field modifies the
antiferroelectric structure of the SmCA1 phase, inducing a
ferrielectric ordering of the molecular dipoles.

A different situation occurs for the structure of the
SmCA2 phase when an electric field is applied, as it is
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Fig. 4. Representation of the structures of two adjacent layers
in the SmCA1 (a) and SmCA2 (b) phases. The description of
the structures is given in the text. In (a) one has θ1 = θ2 and
|P1| = |P2|, whereas in (b) θ1 6= θ2|P1| ‖ |P2|, |P1| 6= |P2|.

illustrated in Figure 4b. In this phase one has, following
(7): ηp ‖ ηA, and thus: ηp ∧ ηA = 2η1 ∧ η2 ∼ 2 sin(φ1 −
φ2) = 0, so that the azimuthal angles of two adjacent
layers are equal (φ1 = φ2 = φ) whereas the tilt angles
verify:

sin 2θ1 = 2(|ηp|+ |ηA|), and sin 2θ2 = 2(|ηp| − |ηA|).
(49)

From the condition that ηA = 0 in the SmA phase, one
gets here: θ1 = θ2 = 0 and sin 2θ = 2|ηp|. Close to the
SmA–SmCA2 transition, in the SmCA2 phase one can as-
sume θ1 + θ2 ∼ 2θ and consequently:

θ1 − θ2 ∼ 2θ|ηA|(1− 4η2
p)
−1/2. (50)

The structure of the SmCA2 phase is shown in Figure 4b.
It is characterized, under applied electric field, by a ferri-
electric ordering of the dipoles which differs from the fer-
rielectric order found in the SmCA1 phase, the two struc-
tures being differentiated only when the field is applied.

Let us now analyze the local structure of the SmC∗A
phase. At zero field one has ηp = 0, η1 = −η2

and ηA = 2η1. Thus |ηA| = sin 2θ1 = sin 2θ2 =

±K2

[
−(α2 − λ2

2/4g2)/β2

]1/2
and φ1 = φ2 +π. The corre-

sponding helicoidal structure is represented in Figure 5a.
Under applied field, using the equilibrium values of the
order-parameter components given by equation (15), in
which we take ω = π/2, one can assume near the Lifshitz
point that the polarization amplitudes p̂1 and p̂2 can be
neglected in equation (15), and that Ay1 = 0. Accordingly:

ηpx ' η0, ηpy ' 0, ηAx ' η̃1 cos qu, ηAy ' η̃2 sin qu (51)

which yield, using (4):

η0 = Pxλ
2
2g
−1
2 (β2α1)1/2K1, and η̃1,2 = â1,2λ2(β2g2)−1/2K2

Fig. 5. Representation of the structures of two adjacent layers
in the SmC∗A phase at zero electric field (a) and under large
fields (b). The description of the structures is given in the text.

where Px = h and â1,2 are given by equation (35). From
(49) one obtains the angles θi and φi(i = 1, 2) in the SmC∗A
phase:

φ1,2 =
π

2
− arcsin

[
± sin qu[(η0 ± η̃1 cos qu)2 + η̃2 sin2 qu]1/2

]
(52)

φ1,2 =

arcsin
[
±[η2

0 + η̃2
1 cos2 qu+ η̃2

2 sin2 qu± 2η0η̃1 cos qu]1/2
]

(53)

where the signs (+) and (−) in (52, 53) correspond respec-
tively to (φ1, θ1) and (φ2, θ2). Under small fields G2h

2 � 1
one has η̃1 ' η̃2 = η̃ � η0, which yields the following ap-
proximative values:

φ1,2 ' ±
π

2
− qu+ η0η̃

−1 sin qu, and θ1,2 '
1

2
arcsin(η̃)

(54)

corresponding to a slightly distorted helix in which the
azimuthal rotation of the molecules takes place non uni-
formly with respect to z: the rotation is periodically accel-
erated in one layer and decelerated in the adjacent layer.
In this case the tilt angle is essentially determined by the
parameter η̃.
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Under large fields, one has η0 � η̃i and the tilt is
determined by η0. Assuming sin 2θ0 = η0 and φ0 = π/2,
one can write: θi = θ0 + δθi, and φi = φ0 + δφi, with:

δθ1,2 = ±η̃1 cos qu(2 cos 2θ0)−1, and δφ1,2 = ±η̃2η
−1
0 sin qu

(55)

which describes the rotation of the molecules around the
average direction θi = θ0, φi = π/2. The molecules in
two adjacent layers rotate in opposed directions, and turn
around an elliptic trajectory as shown in Figure 5b. The
ratio of the axes of the ellipse is:

r = (1−G2h
2)(1 +G2h

2)−1 cos θ0(cos 2θ0)−1.

Following the preceding considerations, the structure of
the SmCA1 , SmCA2 , and SmC∗A phases are locally dis-
torted by the application of an electric field, and may
appear at the macroscopic level as ferrielectric, or com-
plex antiferroelectric phases. This allows a partial inter-
pretation of some regions of the temperature-electric field
phase diagrams, which have been disclosed experimentally
in antiferroelectric liquid crystal systems. If the ferroelec-
tric degree of freedom is negligible with respect to the
antiferroelectric one, the strong dipolar interaction of the
system with the external field, will lead, near to the SmA–
SmC∗A spontaneous transition, to a simultaneous unwind-
ing process and field-induced antiferro-ferroelectric tran-
sition. Far from the SmA phase, in the low temperature
region, the action of the field will first lead to the helix
unwinding and then, with increasing field, to a antiferro-
ferroelectric transition between unwound structures. How-
ever, the preceding scheme will be generally complicated
by the existence of additional phases in the phase dia-
gram, giving rise to more complex phase sequences, which
are beyond the scope of the present study.

For example, in MHPOBC [14,15] the T−E phase
diagram shows that, with increasing field, the SmC∗A
phase transforms into the SmC∗γ ferrielectric phase across
a line of first-order transitions. The domain of stability
of the SmC∗γ phase is enlarged for larger fields, as for
the SmCA1 or SmCA2 phase in Figure 3. However, the
comparison cannot go further as the SmC∗A and the SmC∗γ
phases are separated from the SmA phase, by two addi-
tional antiferroelectric (SmC∗α) and ferroelectric (SmC∗β)

phases. An analogous situation is reported in tolan [18]
{C10H21O-O-C-C-O-COO-O-COO-C∗H(CH3)-C6H13} in
which the SmC∗A phase transforms into the ferrielectric
SmC∗γ phase, with increasing field, the two preceding
phases being separated from the SmA phase by a ferro-
electric SmC∗β phase. In TFMHPOBC, no field-induced
phase is reported between the SmC∗A and SmA phases.
At last, let us mention the case of 3MC2PCPOPB [17]
{4-3(methoxycarbonyl-2-propoxycarbonyl)phenyl 4-(4-
(n-octyloxy)phenyl)benzoate} in which an unidentified
smectic phase, denoted Sm∗, is induced at large fields
from the SmC∗A phase. The line of transitions separating
the SmC∗A and Sm∗ phases merge at a singular point
with the SmC∗–SmC∗A transition line, which is found
in this substance below the SmA phase. An extension
of our work, that would include the SmC∗ phase as

well as ferrielectric phases, is necessary to allow a more
detailed interpretation of the T−E phase diagrams for
the preceding compounds.

One of the authors (A.A.B) is grateful to the Alexander von
Humboldt foundation for financial support.
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